Is No-TENSION DESIGN OF CONCRETE OR ROCK STRUCTURES ALWAYS

نویسنده

  • Zdenek P. Bazant
چکیده

Plain concrete structures such as dams or retaining walls, as well as rock structures such as tunnels, caverns, excavations, and rock slopes, have commonly been designed by elastic-perfectly plastic analysis in which the tensile yield strength of the material is taken as zero. The paper analyzes the safety of this "notension" design in the light of the finiteness of the tensile strength of concrete or the tensile strength of rock between the joints. Through examples, it is demonstrated that: (1) the calculated length of cracks or cracking zones can correspond to an unstable state; (2) the uncracked ligament of the cross section, available for resisting horizontal shear loads, can be predicted much too large, compared to the fracture mechanics prediction; (3) the calculated load-deflection diagram can lie lower than that obtained by fracture mechanics; (4) the no-tension load capacity for a combination of crack face pressure and loads remote from the crack front, calculated by elastic analysis on the basis of allowable compressive stress, can be higher than that obtained by fracture mechanics; and (5) an increase in the tensile strength of the material can cause the load capacity of the structure to decrease. Due to the size effect, these facts are true not only for zero fracture toughness (no-toughness design) but also for finite fracture toughness provided that the structure size is large enough. Several previous studies on the safety of no-tension design, including the finite-element analysis of a gravity dam, are also reviewed. It is concluded that if the no-tension limit design is used, the safety factors of concrete or rock structures cannot be guaranteed to have the specified values. Fracture mechanics is required for that.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calibration of Load and Resistance Factors for Reinforced Concrete

Current approach for designing of reinforced concrete members is based on the load and resistance factor. However the load and resistance parameters are random variables, the constant values have been designated for them in the designing procedure. Assuming these factors as the constants, will be led to the unsafe and uneconomical designs. Safe designing of structures requires appropriate recog...

متن کامل

Effect of Reinforcement Type on the Tension Stiffening Model of Ultra-High Performance Concrete (UHPC)

Ultra-high performance concrete (UHPC) is a developing concrete and today is increasing to interest using it in structures due to its advantages such as high-compressive strength, modulus of elasticity, highly durability and low-permeability. Therefore, it is necessary to provide models for prediction of nonlinear behavior of this material. This study is aimed to investigate the tension-stiffen...

متن کامل

Mechanical Properties of Concrete Containing Tire Rubber Particles toward Constant Development

With many years of construction and application of common concrete, researchers have always been searching for a better composition. One of the notable ideas for achieving such a composition is using recycled materials. One of the materials which is suitable for environment and constant development is damaged tires .For studying mechanical properties of concrete containing tire particles, a ser...

متن کامل

Mechanical Properties of Concrete Containing Tire Rubber Particles toward Constant Development

With many years of construction and application of common concrete, researchers have always been searching for a better composition. One of the notable ideas for achieving such a composition is using recycled materials. One of the materials which is suitable for environment and constant development is damaged tires .For studying mechanical properties of concrete containing tire particles, a ser...

متن کامل

Cumulative Fatigue Damage Under stepwise Tension-Compression Loading

Rock structures are subjected to cyclic tension-compression loading due to a blasting, earthquake, traffic and injection-production in underground storage case. Therefore study the fatigue behavior of rock samples under this type of loading is required. In this study, the accumulated fatigue damage for a Green Onyx rock sample which consisted of only one mineral composition with two-step high-l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001